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Introduction

p(θ|y) ∝ f (y |θ)π(θ)

Questions:

1) How much information does the prior contain?

2) What is the effect of the prior?

(a) Average effect
(b) Effect for data at hand

Appealing approach: effective prior sample size

2 / 27



Data Dependent Prior Impact

True likelihood

πbaseline
πinform

pπbaseline

pπinform
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Multiple Instrument Motivating Example
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Multiple Instrument Example

Goal: combine flux estimates / calibrate instruments

Chen et al. (2019) considered the model:

yij = −0.5 σ2
ij + Bi + Gj + eij , eij

indep∼ N(0, σ2
ij),

where

I i indexes instruments

I j indexes sources

I yij = log photon counts for instrument i and source j

I Bi = log Effective Area of instrument i

I Gj = log Flux of source j

Problem: Bi and Gj are not initially identifiable
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Multiple Instrument Example: Instrument Specific Priors

Identifiable due to prior information:

Bi ∼ N (bi , τ
2
i ), Gj ∼ flat on real line

I Weighting of data from instrument i depends on τ 2
i , in a joint

analysis to estimate the Gj

Question: are some priors driving the final result much more than
others?
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Existing Ways to Measure Prior Impact
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Approach 1: Match Prior to Hypothetical Previous Posterior

Baseline prior: πbase(µ) ∝ 1

Model: y1, . . . , yn
iid∼ N(µ, σ2)

Baseline posterior: µ ∼ N

(
ȳ ,
σ2

n

)

I Suppose informative prior is πinform: µ ∼ N(µ0, τ
2)

I Choose hypothetical previous data so ȳ ≈ µ0 and σ2/n ≈ τ 2

Problem: does not tell us anything about the actual analysis
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ȳ ,
σ2

n

)

I Suppose informative prior is πinform: µ ∼ N(µ0, τ
2)

I Choose hypothetical previous data so ȳ ≈ µ0 and σ2/n ≈ τ 2
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Approach 1: Match Prior to Hypothetical Previous Posterior

Likelihood of
hypothetical
prior dataπbaseline

πinform

pπbaseline

I Clarke (1996): choose specific hypothetical dataset to minimize
KL divergence between hypothetical posterior and our informative
prior

I Morita et al. (2008): similar but chooses the sample size and
averages over the hypothetical data
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Effective Prior Sample Size

Informative prior: µ ∼ N

(
µ0,

σ2

k

)
Model: y1, . . . , yn

iid∼ N(µ, σ2)

Informative prior posterior: µ ∼ N

(
µ1 = αȳ1:n + (1− α)µ0,

σ2

n + k

)
,

where α =
n

n + k

Interpretation:
I EPSS = k

Problems:
I What if the model is not conjugate?
I If µ0 is far from ȳ then the actual impact of the prior on the

posterior distribution can be arbitrarily large
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Approach 2: Extending Effective Prior Sample Size

Baseline prior: πbase(µ) ∝ 1

Informative prior: µ ∼ N

(
µ0,

σ2

k

)
Model: y1, . . . , yn

iid∼ N(µ, σ2)

Baseline prior posterior: µ ∼ N

(
ȳ1:m,

σ2

m

)
Informative prior posterior: µ ∼ N

(
µ1 = αȳ1:n + (1− α)µ0,

σ2

n + k

)
,

where α =
n

n + k

Basic idea:
I Set m = n + k
I Then variance of two posteriors agree
I ⇒ EPSS of πinform is k 11 / 27



Approach 2: Extending Effective Prior Sample Size

Likelihood
function combined
with bootstrap data

πbaseline
πinform

pπbaseline

pπinform

I Reimherr et al. (2014): how many extra samples needed to
minimize the separation between posteriors?

I Not real posteriors – based on (< n) “bootstrap” samples

I Captures importance of prior location, but only on average
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What about the prior impact for my specific
dataset?
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Data Dependent Prior Impact

Intuition: how many extra samples do I need to minimize the separation
between the baseline prior posterior and the informative prior
posterior?

True likelihood

πbaseline
πinform

pπbaseline

pπinform
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General formulation

For j = 1, . . . ,N:

I Generate new samples: yn+1, . . . , yMmax

I Compute distances: for m = Mmin, . . . , n, . . . ,Mmax compute

Dm = Dist(p(θ|y1:n, πinform), p(θ|y1:m, πbase))

I Simulation specific PSS: PSSj = argmin
m

Dm − n

End for loop

Report final PSS = 1
N

∑
PSSj

MOPESS: Mean Observed Prior Effective Sample Size
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Key components

1. How to generate extra samples?
I Our approach: posterior predictive simulation

θ ∼ pπinformative

(yn+1, . . . , ym) ∼ fθ

=⇒ Bayes estimator of PSS

2. What is the distance?
I e.g. Wasserstein distance

3. How to set the weights wj in PSS =
∑

wjPSSj?
I Distance never exactly zero
I Not discussed in previous work i.e. wj = 1

N
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Illustrations
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Simple numerical example

Baseline prior: πbase(µ) ∝ 1

Informative prior: µ ∼ N

(
µ0,

σ2

k

)
Model: y1, . . . , yn

iid∼ N(µ = 0, σ2)

Baseline posterior: µ ∼ N

(
ȳ1:m,

σ2

m

)
Informative posterior: µ ∼ N

(
µ1 = αȳ1:n + (1− α)µ0,

σ2

n + k

)
,

where α =
n

n + k
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Simple numerical example: agreeing prior

I µ0 = 0, k = 10

I n = 20, σ2 = 1

I 1000 simulated datasets y
(1)
1:n , . . . , y
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1:n
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PSS as a function of data mean
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Low PSS example case
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Reimherr et al. (2014): when we are “lucky” and the prior lines up
exactly with the truth this corresponds to “super-information”

Different framing: high concordance vs. little impact
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High PSS example case

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●

●

● ●
●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
● ●

●

●●

●

●

●●●
●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●
●

●
●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

● ●●
●

●
●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●
●

●
● ●

●
●

●●

●
●

●

●

● ●

●
●

●

● ●
●
●

●●

●

●
●

●

●

●●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●●

●

●

● ●
●

●●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●●

●

●
●

● ● ●●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●●

●● ●
●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●
●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●●●

●

●
●

●
●● ●

● ●

●

●

●

●

●

●

●● ●

● ●

●

●
●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●●●

●

●

●
●

●

●

● ●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●
●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●
●

● ●●
●

●

● ●●

●●

●

●
●

●
●

● ● ●

●
●

●

●

●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

● ●

●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●
●

●

● ●

●

●

●

●●
● ●

●●

●

●

●
●●

● ●

●

●

●

●

−0.5 0.0 0.5

8
10

12
14

16
18

Mean of Y1:n

P
S

S

−1.5 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

µ

D
en

si
ty

pπinform

πbaseline

πinform

pπbaseline

22 / 27



Regression example

Model:

Yi |β,Xi = xi ∼ N (β1 + β2xi , σ
2)

Priors:

πinform: β ∼ N (η0,Σ0) , where Σ0 =

[
τ 2

1 0
0 τ 2

2

]
,

πbase(β) ∝ 1

Setup:

I For simplicity assume known:
η0 = (µ0, γ0) = (0, 0), τ 2

1 , τ
2
2 = 0.1, and σ2 = 1

I Nominal EPSS for βi under πinform = σ2/τ 2
i = 10, for i ∈ [1, 2]
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Regression example: MOPESS
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I Simulation based on Xi ∼ N (0, 1) (more generally we can resample
from the empirical distribution)
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Regression example: MOPESS
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Regression example: OPESS
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Conceptual developments and future work

Conceptual developments:

I Prior impact depends on the data

I Directly compare the posterior distributions under different priors

I Future data: posterior predictive distribution

Future statistical work:

I Distance almost never exactly zero

I Connections with sensitivity analysis

Future astrostatical work:

I Multiple instrument application: what is the impact of priors from
different telescope teams?

I Gravitational waves application? :)
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Simple numerical example: agreeing prior

I µ0 = 0, k = 10
I n = 20, σ2 = 1
I 1000 simulated datasets y
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Simple numerical example: disagreeing prior

I µ0 = 1, k = 10
I n = 20, σ2 = 1
I 1000 simulated datasets y
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Strong impact

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

10
15

20
25

30

Mean of Y1:n

P
S

S

32 / 27


