Quantifying Observed Prior Impact

David Jones
Texas A\&M University
Joint work with Robert Trangucci and Yang Chen (UMich)

November 17, 2020

Introduction

$$
p(\theta \mid y) \propto f(y \mid \theta) \pi(\theta)
$$

Questions:

1) How much information does the prior contain?
2) What is the effect of the prior?
(a) Average effect
(b) Effect for data at hand

Appealing approach: effective prior sample size

Data Dependent Prior Impact

Multiple Instrument Motivating Example

Multiple Instrument Example

Goal: combine flux estimates / calibrate instruments
Chen et al. (2019) considered the model:

$$
y_{i j}=-0.5 \sigma_{i j}^{2}+B_{i}+G_{j}+e_{i j}, \quad e_{i j} \stackrel{\text { indep }}{\sim} N\left(0, \sigma_{i j}^{2}\right),
$$

where

- i indexes instruments
- j indexes sources
- $y_{i j}=\log$ photon counts for instrument i and source j
- $B_{i}=\log$ Effective Area of instrument i
- $G_{j}=\log$ Flux of source j

Multiple Instrument Example

Goal: combine flux estimates / calibrate instruments
Chen et al. (2019) considered the model:

$$
y_{i j}=-0.5 \sigma_{i j}^{2}+B_{i}+G_{j}+e_{i j}, \quad e_{i j} \stackrel{\text { indep }}{\sim} N\left(0, \sigma_{i j}^{2}\right),
$$

where

- i indexes instruments
- j indexes sources
- $y_{i j}=\log$ photon counts for instrument i and source j
- $B_{i}=\log$ Effective Area of instrument i
- $G_{j}=\log$ Flux of source j

Problem: B_{i} and G_{j} are not initially identifiable

Multiple Instrument Example: Instrument Specific Priors

Identifiable due to prior information:

$$
B_{i} \sim \mathcal{N}\left(b_{i}, \tau_{i}^{2}\right), \quad G_{j} \sim \text { flat on real line }
$$

- Weighting of data from instrument i depends on τ_{i}^{2}, in a joint analysis to estimate the G_{j}

Question: are some priors driving the final result much more than others?

Existing Ways to Measure Prior Impact

Approach 1: Match Prior to Hypothetical Previous Posterior

Approach 1: Match Prior to Hypothetical Previous Posterior

Baseline prior: $\pi_{\text {base }}(\mu) \propto 1$
Model: $y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$

Baseline posterior: $\mu \sim N\left(\bar{y}, \frac{\sigma^{2}}{n}\right)$

Approach 1: Match Prior to Hypothetical Previous Posterior

Baseline prior: $\pi_{\text {base }}(\mu) \propto 1$
Model: $y_{1}, \ldots, y_{n} \xrightarrow{\text { iid }} N\left(\mu, \sigma^{2}\right)$

Baseline posterior: $\mu \sim N\left(\bar{y}, \frac{\sigma^{2}}{n}\right)$

- Suppose informative prior is $\pi_{\text {inform }}: \mu \sim N\left(\mu_{0}, \tau^{2}\right)$

Approach 1: Match Prior to Hypothetical Previous Posterior

Baseline prior: $\pi_{\text {base }}(\mu) \propto 1$
Model: $y_{1}, \ldots, y_{n} \stackrel{\text { iid }}{\sim} N\left(\mu, \sigma^{2}\right)$

Baseline posterior: $\mu \sim N\left(\bar{y}, \frac{\sigma^{2}}{n}\right)$

- Suppose informative prior is $\pi_{\text {inform }}: \mu \sim N\left(\mu_{0}, \tau^{2}\right)$
- Choose hypothetical previous data so $\bar{y} \approx \mu_{0}$ and $\sigma^{2} / n \approx \tau^{2}$

Approach 1: Match Prior to Hypothetical Previous Posterior

Baseline prior: $\pi_{\text {base }}(\mu) \propto 1$
Model: $y_{1}, \ldots, y_{n} \stackrel{\text { iid }}{\sim} N\left(\mu, \sigma^{2}\right)$

Baseline posterior: $\mu \sim N\left(\bar{y}, \frac{\sigma^{2}}{n}\right)$

- Suppose informative prior is $\pi_{\text {inform }}: \mu \sim N\left(\mu_{0}, \tau^{2}\right)$
- Choose hypothetical previous data so $\bar{y} \approx \mu_{0}$ and $\sigma^{2} / n \approx \tau^{2}$

Problem: does not tell us anything about the actual analysis

Approach 1: Match Prior to Hypothetical Previous Posterior

- Clarke (1996): choose specific hypothetical dataset to minimize KL divergence between hypothetical posterior and our informative prior
- Morita et al. (2008): similar but chooses the sample size and averages over the hypothetical data

Effective Prior Sample Size

Informative prior: $\mu \sim N\left(\mu_{0}, \frac{\sigma^{2}}{k}\right)$
Model: $y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$

Informative prior posterior: $\mu \sim N\left(\mu_{1}=\alpha \bar{y}_{1: n}+(1-\alpha) \mu_{0}, \frac{\sigma^{2}}{n+k}\right)$,
where $\alpha=\frac{n}{n+k}$

Effective Prior Sample Size

Informative prior: $\mu \sim N\left(\mu_{0}, \frac{\sigma^{2}}{k}\right)$
Model: $y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$

Informative prior posterior: $\mu \sim N\left(\mu_{1}=\alpha \bar{y}_{1: n}+(1-\alpha) \mu_{0}, \frac{\sigma^{2}}{n+k}\right)$,
where $\alpha=\frac{n}{n+k}$
Interpretation:

- EPSS $=\mathrm{k}$

Effective Prior Sample Size

Informative prior: $\mu \sim N\left(\mu_{0}, \frac{\sigma^{2}}{k}\right)$
Model: $y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$

Informative prior posterior: $\mu \sim N\left(\mu_{1}=\alpha \bar{y}_{1: n}+(1-\alpha) \mu_{0}, \frac{\sigma^{2}}{n+k}\right)$,

$$
\text { where } \alpha=\frac{n}{n+k}
$$

Interpretation:

- EPSS $=k$

Problems:

- What if the model is not conjugate?
- If μ_{0} is far from \bar{y} then the actual impact of the prior on the posterior distribution can be arbitrarily large

Approach 2: Extending Effective Prior Sample Size

Baseline prior: $\pi_{\text {base }}(\mu) \propto 1$
Informative prior: $\mu \sim N\left(\mu_{0}, \frac{\sigma^{2}}{k}\right)$

$$
\text { Model: } y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)
$$

Baseline prior posterior: $\mu \sim N\left(\bar{y}_{1: m}, \frac{\sigma^{2}}{m}\right)$
Informative prior posterior: $\mu \sim N\left(\mu_{1}=\alpha \bar{y}_{1: n}+(1-\alpha) \mu_{0}, \frac{\sigma^{2}}{n+k}\right)$,

$$
\text { where } \alpha=\frac{n}{n+k}
$$

Basic idea:

- Set $m=n+k$
- Then variance of two posteriors agree
$>\Rightarrow$ EPSS of $\pi_{\text {inform }}$ is k

Approach 2: Extending Effective Prior Sample Size

- Reimherr et al. (2014): how many extra samples needed to minimize the separation between posteriors?
- Not real posteriors - based on ($<n$) "bootstrap" samples
- Captures importance of prior location, but only on average

What about the prior impact for my specific

 dataset?
Data Dependent Prior Impact

Intuition: how many extra samples do I need to minimize the separation between the baseline prior posterior and the informative prior posterior?

General formulation

For $j=1, \ldots, N$:

- Generate new samples: $y_{n+1}, \ldots, y_{M_{\text {max }}}$
- Compute distances: for $m=M_{\min }, \ldots, n, \ldots, M_{\max }$ compute

$$
D_{m}=\operatorname{Dist}\left(p\left(\theta \mid y_{1: n}, \pi_{\text {inform }}\right), p\left(\theta \mid y_{1: m}, \pi_{\text {base }}\right)\right)
$$

- Simulation specific PSS: $\mathrm{PSS}_{j}=\operatorname{argmin} D_{m}-n$

End for loop

Report final PSS $=\frac{1}{N} \sum \mathrm{PSS}_{j}$

General formulation

For $j=1, \ldots, N$:

- Generate new samples: $y_{n+1}, \ldots, y_{M_{\max }}$
- Compute distances: for $m=M_{\min }, \ldots, n, \ldots, M_{\max }$ compute

$$
D_{m}=\operatorname{Dist}\left(p\left(\theta \mid y_{1: n}, \pi_{\text {inform }}\right), p\left(\theta \mid y_{1: m}, \pi_{\text {base }}\right)\right)
$$

- Simulation specific PSS: $\mathrm{PSS}_{j}=\operatorname{argmin} D_{m}-n$

End for loop

Report final PSS $=\frac{1}{N} \sum$ PSS $_{j}$
MOPESS: Mean Observed Prior Effective Sample Size

Key components

1. How to generate extra samples?

- Our approach: posterior predictive simulation

$$
\theta \sim p_{\pi_{\text {informative }}}
$$
$$
\left(y_{n+1}, \ldots, y_{m}\right) \sim f_{\theta}
$$
\Longrightarrow Bayes estimator of PSS

Key components

1. How to generate extra samples?

- Our approach: posterior predictive simulation

$\theta \sim p_{\pi_{\text {informative }}}$ $\left(y_{n+1}, \ldots, y_{m}\right) \sim f_{\theta}$
\Longrightarrow Bayes estimator of PSS

2. What is the distance?

- e.g. Wasserstein distance

Key components

1. How to generate extra samples?

- Our approach: posterior predictive simulation

$$
\begin{aligned}
\theta & \sim p_{\pi_{\text {informative }}} \\
\left(y_{n+1}, \ldots, y_{m}\right) & \sim f_{\theta}
\end{aligned}
$$

2. What is the distance?

- e.g. Wasserstein distance

3. How to set the weights w_{j} in PSS $=\sum w_{j} \mathrm{PSS}_{j}$?

- Distance never exactly zero
- Not discussed in previous work i.e. $w_{j}=\frac{1}{N}$

Illustrations

Simple numerical example

Baseline prior: $\pi_{\text {base }}(\mu) \propto 1$
Informative prior: $\mu \sim N\left(\mu_{0}, \frac{\sigma^{2}}{k}\right)$
Model: $y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} N\left(\mu=0, \sigma^{2}\right)$

Baseline posterior: $\mu \sim N\left(\bar{y}_{1: m}, \frac{\sigma^{2}}{m}\right)$
Informative posterior: $\mu \sim N\left(\mu_{1}=\alpha \bar{y}_{1: n}+(1-\alpha) \mu_{0}, \frac{\sigma^{2}}{n+k}\right)$,

$$
\text { where } \alpha=\frac{n}{n+k}
$$

Simple numerical example: agreeing prior

- $\mu_{0}=0, k=10$
- $n=20, \sigma^{2}=1$
- 1000 simulated datasets $y_{1: n}^{(1)}, \ldots, y_{1: n}^{(1000)}$

PSS as a function of data mean

Low PSS example case

Reimherr et al. (2014): when we are "lucky" and the prior lines up exactly with the truth this corresponds to "super-information"

Different framing: high concordance vs. little impact

High PSS example case

Regression example

Model:

$$
Y_{i} \mid \boldsymbol{\beta}, X_{i}=x_{i} \sim \mathcal{N}\left(\beta_{1}+\beta_{2} x_{i}, \sigma^{2}\right)
$$

Priors:

$$
\begin{aligned}
\pi_{\text {inform }}: \quad \boldsymbol{\beta} & \sim \mathcal{N}\left(\boldsymbol{\eta}_{0}, \Sigma_{0}\right), \quad \text { where } \quad \Sigma_{0}=\left[\begin{array}{cc}
\tau_{1}^{2} & 0 \\
0 & \tau_{2}^{2}
\end{array}\right] \\
\pi_{\text {base }}(\boldsymbol{\beta}) & \propto 1
\end{aligned}
$$

Setup:

- For simplicity assume known:

$$
\boldsymbol{\eta}_{0}=\left(\mu_{0}, \gamma_{0}\right)=(0,0), \tau_{1}^{2}, \tau_{2}^{2}=0.1, \text { and } \sigma^{2}=1
$$

- Nominal EPSS for β_{i} under $\pi_{\text {inform }}=\sigma^{2} / \tau_{i}^{2}=10$, for $i \in[1,2]$

Regression example: MOPESS

- Simulation based on $X_{i} \sim \mathcal{N}(0,1)$ (more generally we can resample from the empirical distribution)

Regression example: MOPESS

Regression example: OPESS

Conceptual developments and future work

Conceptual developments:

- Prior impact depends on the data
- Directly compare the posterior distributions under different priors
- Future data: posterior predictive distribution

Conceptual developments and future work

Conceptual developments:

- Prior impact depends on the data
- Directly compare the posterior distributions under different priors
- Future data: posterior predictive distribution

Future statistical work:

- Distance almost never exactly zero
- Connections with sensitivity analysis

Conceptual developments and future work

Conceptual developments:

- Prior impact depends on the data
- Directly compare the posterior distributions under different priors
- Future data: posterior predictive distribution

Future statistical work:

- Distance almost never exactly zero
- Connections with sensitivity analysis

Future astrostatical work:

- Multiple instrument application: what is the impact of priors from different telescope teams?
- Gravitational waves application? :)

References

1. Jones DE, Trangucci RN, and Chen Y. "Quantifying Observed Prior Impact." arXiv preprint arXiv:2001.10664 (2020).
2. Chen Y, Meng XL, Wang X et al. "Calibration concordance for astronomical instruments via multiplicative shrinkage." Journal of the American Statistical Association 114.527 (2019): 1018-1037.
3. Reimherr M, Meng XL, and Nicolae DL. "Being an informed Bayesian: Assessing prior informativeness and prior likelihood conflict." arXiv preprint arXiv:1406.5958 (2014).
4. Morita S, Thall PF, and Müller P. "Determining the effective sample size of a parametric prior." Biometrics 64.2 (2008): 595-602.
5. Clarke B. "Implications of reference priors for prior information and for sample size." Journal of the American Statistical Association 91.433 (1996): 173-184.

Minimum distance

Simple numerical example: agreeing prior

- $\mu_{0}=0, k=10$
- $n=20, \sigma^{2}=1$
- 1000 simulated datasets $y_{1: n}^{(1)}, \ldots, y_{1: n}^{(1000)}$

Simple numerical example: disagreeing prior

- $\mu_{0}=1, k=10$
- $n=20, \sigma^{2}=1$
- 1000 simulated datasets $y_{1: n}^{(1)}, \ldots, y_{1: n}^{(1000)}$

Strong impact

