Quantifying Observed Prior Impact

David Jones Texas A&M University

Joint work with Robert Trangucci and Yang Chen (UMich)

November 17, 2020

Introduction

$p(\theta|y) \propto f(y|\theta)\pi(\theta)$

Questions:

- 1) How much information does the prior contain?
- 2) What is the effect of the prior?
 - (a) Average effect
 - (b) Effect for data at hand

Appealing approach: effective prior sample size

Data Dependent Prior Impact

Multiple Instrument Motivating Example

Multiple Instrument Example

Goal: combine flux estimates / calibrate instruments

Chen et al. (2019) considered the model:

$$y_{ij} = -0.5 \,\, \sigma_{ij}^2 + B_i + G_j + e_{ij}, \qquad e_{ij} \stackrel{\mathrm{indep}}{\sim} \mathcal{N}(0, \sigma_{ij}^2),$$

where

- i indexes instruments
- ▶ j indexes sources
- $y_{ij} = \log photon$ counts for instrument *i* and source *j*
- $B_i = \log$ Effective Area of instrument *i*
- $G_j = \log \text{ Flux of source } j$

Multiple Instrument Example

Goal: combine flux estimates / calibrate instruments

Chen et al. (2019) considered the model:

$$y_{ij} = -0.5 \,\, \sigma_{ij}^2 + B_i + G_j + e_{ij}, \qquad e_{ij} \stackrel{\mathrm{indep}}{\sim} \mathcal{N}(0, \sigma_{ij}^2),$$

where

- i indexes instruments
- ► *j* indexes sources
- $y_{ij} = \log \text{ photon counts for instrument } i \text{ and source } j$
- $B_i = \log$ Effective Area of instrument *i*
- $G_j = \log \text{ Flux of source } j$

Problem: B_i and G_j are not initially identifiable

Multiple Instrument Example: Instrument Specific Priors

Identifiable due to prior information:

 $B_i \sim \mathcal{N}(b_i, \tau_i^2), \quad G_j \sim \text{flat on real line}$

Weighting of data from instrument *i* depends on τ_i², in a joint analysis to estimate the G_i

Question: are some priors driving the final result much more than others?

Existing Ways to Measure Prior Impact

Baseline prior:
$$\pi_{\text{base}}(\mu) \propto 1$$

Model: $y_1, \dots, y_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$

Baseline posterior:
$$\mu \sim N\left(\bar{y}, \frac{\sigma^2}{n}\right)$$

Baseline prior:
$$\pi_{\text{base}}(\mu) \propto 1$$

Model: $y_1, \dots, y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$

Baseline posterior:
$$\mu \sim N\left(\bar{y}, \frac{\sigma^2}{n}\right)$$

• Suppose informative prior is π_{inform} : $\mu \sim N(\mu_0, \tau^2)$

Baseline prior:
$$\pi_{\text{base}}(\mu) \propto 1$$

Model: $y_1, \dots, y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$

Baseline posterior:
$$\mu \sim N\left(\bar{y}, \frac{\sigma^2}{n}\right)$$

- Suppose informative prior is π_{inform} : $\mu \sim N(\mu_0, \tau^2)$
- Choose hypothetical previous data so $\bar{y} \approx \mu_0$ and $\sigma^2/n \approx \tau^2$

Baseline prior:
$$\pi_{\text{base}}(\mu) \propto 1$$

Model: $y_1, \dots, y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$

Baseline posterior:
$$\mu \sim N\left(\bar{y}, \frac{\sigma^2}{n}\right)$$

- Suppose informative prior is π_{inform} : $\mu \sim N(\mu_0, \tau^2)$
- Choose hypothetical previous data so $\bar{y} \approx \mu_0$ and $\sigma^2/n \approx \tau^2$

Problem: does not tell us anything about the actual analysis

- Clarke (1996): choose specific hypothetical dataset to minimize KL divergence between hypothetical posterior and our informative prior
- Morita et al. (2008): similar but chooses the sample size and averages over the hypothetical data

Effective Prior Sample Size

Informative prior:
$$\mu \sim N\left(\mu_0, \frac{\sigma^2}{k}\right)$$

Model: $y_1, \dots, y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$

Informative prior posterior:
$$\mu \sim N\left(\mu_1 = \alpha \bar{y}_{1:n} + (1-\alpha)\mu_0, \frac{\sigma^2}{n+k}\right)$$
,
where $\alpha = \frac{n}{n+k}$

Effective Prior Sample Size

Informative prior:
$$\mu \sim N\left(\mu_0, \frac{\sigma^2}{k}\right)$$

Model: $y_1, \dots, y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$

Informative prior posterior:
$$\mu \sim N\left(\mu_1 = \alpha \bar{y}_{1:n} + (1-\alpha)\mu_0, \frac{\sigma^2}{n+k}\right)$$
,
where $\alpha = \frac{n}{n+k}$

Interpretation:

 \blacktriangleright EPSS = k

Effective Prior Sample Size

Informative prior:
$$\mu \sim N\left(\mu_0, \frac{\sigma^2}{k}\right)$$

Model: $y_1, \dots, y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$

Informative prior posterior:
$$\mu \sim N\left(\mu_1 = \alpha \bar{y}_{1:n} + (1-\alpha)\mu_0, \frac{\sigma^2}{n+k}\right)$$
,
where $\alpha = \frac{n}{n+k}$

Interpretation:

 \blacktriangleright EPSS = k

Problems:

- What if the model is not conjugate?
- lf μ_0 is far from \bar{y} then the actual impact of the prior on the posterior distribution can be arbitrarily large

Approach 2: Extending Effective Prior Sample Size

Baseline prior:
$$\pi_{\text{base}}(\mu) \propto 1$$

Informative prior: $\mu \sim N\left(\mu_0, \frac{\sigma^2}{k}\right)$
Model: $y_1, \dots, y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$

Baseline prior posterior:
$$\mu \sim N\left(\bar{y}_{1:m}, \frac{\sigma^2}{m}\right)$$

Informative prior posterior: $\mu \sim N\left(\mu_1 = \alpha \bar{y}_{1:n} + (1-\alpha)\mu_0, \frac{\sigma^2}{n+k}\right)$, where $\alpha = \frac{n}{n+k}$

Basic idea:

Set
$$m = n + k$$

Then variance of two posteriors agree

► ⇒ EPSS of
$$\pi_{inform}$$
 is k

Approach 2: Extending Effective Prior Sample Size

- Reimherr et al. (2014): how many extra samples needed to minimize the separation between posteriors?
- ▶ Not real posteriors based on (< n) "bootstrap" samples
- Captures importance of prior location, but only on average

What about the prior impact for my specific dataset?

Data Dependent Prior Impact

Intuition: how many extra samples do I need to minimize the separation between the **baseline prior posterior** and the **informative prior posterior**?

General formulation

For j = 1, ..., N:

- **•** Generate new samples: $y_{n+1}, \ldots, y_{M_{max}}$
- **Compute distances:** for $m = M_{min}, \ldots, n, \ldots, M_{max}$ compute

 $D_m = \mathsf{Dist}(p(\theta|\mathbf{y}_{1:n}, \pi_{\mathsf{inform}}), p(\theta|\mathbf{y}_{1:m}, \pi_{\mathsf{base}}))$

Simulation specific PSS: $PSS_j = \underset{m}{\operatorname{argmin}} D_m - n$ End for loop

Report final PSS = $\frac{1}{N} \sum PSS_j$

General formulation

For j = 1, ..., N:

- Generate new samples: $y_{n+1}, \ldots, y_{M_{max}}$
- **Compute distances:** for $m = M_{min}, \ldots, n, \ldots, M_{max}$ compute

 $D_m = \mathsf{Dist}(p(\theta|\mathbf{y}_{1:n}, \pi_{\mathsf{inform}}), p(\theta|\mathbf{y}_{1:m}, \pi_{\mathsf{base}}))$

Simulation specific PSS: $PSS_j = \underset{m}{\operatorname{argmin}} D_m - n$ End for loop

Report final PSS = $\frac{1}{N} \sum PSS_j$

MOPESS: Mean Observed Prior Effective Sample Size

Key components

- 1. How to generate extra samples?
 - Our approach: posterior predictive simulation

 $heta \sim p_{\pi_{ ext{informative}}} \ (y_{n+1}, \dots, y_m) \sim f_ heta$

 \Longrightarrow Bayes estimator of PSS

Key components

1. How to generate extra samples?

Our approach: posterior predictive simulation

$$egin{aligned} & heta & heta & \pi_{ ext{informative}} \ & (y_{n+1}, \dots, y_m) & \sim f_{ heta} \end{aligned}$$

 \Longrightarrow Bayes estimator of PSS

- 2. What is the distance?
 - e.g. Wasserstein distance

Key components

1. How to generate extra samples?

Our approach: posterior predictive simulation

(

$$heta \sim p_{\pi_{ ext{informative}}}$$

 $(y_{n+1},\ldots,y_m) \sim f_{ heta}$

 \Longrightarrow Bayes estimator of PSS

- 2. What is the distance?
 - e.g. Wasserstein distance
- 3. How to set the weights w_j in PSS = $\sum w_j PSS_j$?
 - Distance never exactly zero
 - Not discussed in previous work i.e. $w_j = \frac{1}{N}$

Illustrations

Simple numerical example

Baseline prior:
$$\pi_{\text{base}}(\mu) \propto 1$$

Informative prior: $\mu \sim N\left(\mu_0, \frac{\sigma^2}{k}\right)$
Model: $y_1, \dots, y_n \stackrel{iid}{\sim} N(\mu = 0, \sigma^2)$

Baseline posterior:
$$\mu \sim N\left(\bar{y}_{1:m}, \frac{\sigma^2}{m}\right)$$

Informative posterior: $\mu \sim N\left(\mu_1 = \alpha \bar{y}_{1:n} + (1-\alpha)\mu_0, \frac{\sigma^2}{n+k}\right)$,
where $\alpha = \frac{n}{n+k}$

Simple numerical example: agreeing prior

• $\mu_0 = 0, \ k = 10$ • $n = 20, \ \sigma^2 = 1$ • 1000 simulated datasets $y_{1:n}^{(1)}, \dots, y_{1:n}^{(1000)}$

PSS as a function of data mean

Reimherr et al. (2014): when we are "lucky" and the prior lines up exactly with the truth this corresponds to "super-information"

Different framing: high concordance vs. little impact

High PSS example case

Regression example

Model:

$$Y_i|\boldsymbol{\beta}, X_i = x_i \sim \mathcal{N}(\beta_1 + \beta_2 x_i, \sigma^2)$$

Priors:

$$\begin{split} \pi_{\mathsf{inform}} &: \quad \boldsymbol{\beta} \sim \mathcal{N}\left(\boldsymbol{\eta}_0, \boldsymbol{\Sigma}_0\right), \quad \mathsf{where} \quad \boldsymbol{\Sigma}_0 = \begin{bmatrix} \tau_1^2 & 0\\ 0 & \tau_2^2 \end{bmatrix}, \\ \pi_{\mathsf{base}}(\boldsymbol{\beta}) \propto 1 \end{split}$$

Setup:

For simplicity assume known: $\eta_0 = (\mu_0, \gamma_0) = (0, 0), \ \tau_1^2, \tau_2^2 = 0.1, \text{ and } \sigma^2 = 1$ Nominal EPSS for β_i under $\pi_{inform} = \sigma^2 / \tau_i^2 = 10$, for $i \in [1, 2]$

Regression example: MOPESS

 Simulation based on X_i ~ N(0,1) (more generally we can resample from the empirical distribution)

Regression example: MOPESS

Regression example: OPESS

Conceptual developments and future work

Conceptual developments:

- Prior impact depends on the data
- Directly compare the posterior distributions under different priors
- Future data: posterior predictive distribution

Conceptual developments and future work

Conceptual developments:

- Prior impact depends on the data
- Directly compare the posterior distributions under different priors
- Future data: posterior predictive distribution

Future statistical work:

- Distance almost never exactly zero
- Connections with sensitivity analysis

Conceptual developments and future work

Conceptual developments:

- Prior impact depends on the data
- Directly compare the posterior distributions under different priors
- Future data: posterior predictive distribution

Future statistical work:

- Distance almost never exactly zero
- Connections with sensitivity analysis

Future astrostatical work:

- Multiple instrument application: what is the impact of priors from different telescope teams?
- Gravitational waves application? :)

References

- 1. Jones DE, Trangucci RN, and Chen Y. "Quantifying Observed Prior Impact." arXiv preprint arXiv:2001.10664 (2020).
- Chen Y, Meng XL, Wang X et al. "Calibration concordance for astronomical instruments via multiplicative shrinkage." Journal of the American Statistical Association 114.527 (2019): 1018-1037.
- Reimherr M, Meng XL, and Nicolae DL. "Being an informed Bayesian: Assessing prior informativeness and prior likelihood conflict." arXiv preprint arXiv:1406.5958 (2014).
- 4. Morita S, Thall PF, and Müller P. "Determining the effective sample size of a parametric prior." Biometrics 64.2 (2008): 595-602.
- Clarke B. "Implications of reference priors for prior information and for sample size." Journal of the American Statistical Association 91.433 (1996): 173-184.

Minimum distance

Simple numerical example: agreeing prior

• $\mu_0 = 0, \ k = 10$ • $n = 20, \ \sigma^2 = 1$ • 1000 simulated datasets $y_{1:n}^{(1)}, \dots, y_{1:n}^{(1000)}$

Simple numerical example: disagreeing prior

▶ $\mu_0 = 1, \ k = 10$ ▶ $n = 20, \ \sigma^2 = 1$ ▶ 1000 simulated datasets $y_{1:n}^{(1)}, \dots, y_{1:n}^{(1000)}$

Strong impact

